
RL-TR-95-33
In-House Report
March 1995

A CLIENT-SERVER APPROACH TO DCE
INTEROPERABILITY THE CRONUS/ISIS
PROJECT (CRISIS)

Patrick M. Hurley and Terrance A. Stedman JUN 0 7.1995 1

APPROVED FOR PUBL/C RELEASE; D/STR/BUT/ON UNL/MJTED.

19950605 033
Rome Laboratory

Air Force Materiel Command
Griffiss Air Force Base, New York

DTICQUALITY L^I J JIED 3

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-33 has been reviewed and is approved for publication.

APPROVED: ^//S}j7//jJJ Ckrfk U^

ANTHONY F. SNYDER, Chief
C2 Systems Division
Command, Control and Communications Directorate

FOR THE COMMANDER:

HENRY J. BUSH
Deputy for Advanced Programs
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reportr« burden for this cotectbn of tf ormatjon Is esfrnated to average 1 hour per response, inducing the time for reviewing Instructions, searching existing data sources,
gatheringlnd irortartTg the data needed, and comptetrng and reviewing the auction omormatloR Serxicommert^
cotaetion of H ormatjon, hdudhg suggestions for reducing this burden, to Washington Headquarters Services, Diectorate for Information Operations andReports, 1215 Jefferson
Davis Highway Suto 1204 Arihgton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
March 1995

a REPORT TYPE AND DATES COVERED
In-House

4. TITLE AND SUBTITLE
A CLIENT-SERVER APPROACH TO DCE INTER-OPERABILITY
THE CRONUS/ISIS PROJECT (CRISIS)

6. AUTHOR(S)
Patrick M. Hurley and Terrance A. Stedman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rome Laboratory (C3AB)
525 Brooks Road
Griffiss AFB NY 13441-4505

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory (C3AB)
i>25 Brooks Road
Griffiss AFB NY 13441-4505

5. FUNDING NUMBERS
PE - 62702F
PR - 5581
TA - 28
WU - 25

8. PERFORMING ORGANIZATION
REPORT NUMBER

RL-TR-95-33

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Patrick M. Hurley/C3AB (315) 330-3623

12a DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACT(M«rnum2oowords) Distributed computing environments (DCEs; support several key
attributes that are essential for the development and execution of Command and Control
(C2) applications. These attributes include heterogeneity, resource availability, con-
current programming, fault tolerance, and resource management. Many DCEs claim to
support all or some of these key attributes. In reality, however, no one DCE can easily
and efficiently address all the needs of every application. The needs of large appli-
cations that encompass a diverse set of requirements, such as C2 applications, are
especially difficult to satisfy with any one DCE. The reason for this is that many DCEs
are designed using vastly different design methodologies that make them better suited
for different types of problems. The Cronus/ISIS (CRISIS) project is an attempt to com
bine attributes from multiple DCEs to allow the application designer more freedom when
designing complex applications. Specifically, the objective of the CRISIS project is
to design and demonstrate the inter-operability of two structurally different DCEs.
This was accomplished by building an application that spans two mature yet different
DCEs (Cronus and Isis). The rationale for doing this was to utilize the strengths of
each distributed computing environment, where a certain DCEs design methodology is bet-

ter suited for that part of the application.

14. SUBJECT TERMS TCTC
Distributed Computing Environments, Distributed Systems, iblb,
CRONUS, Distributed Operating System

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

15. NUMBER OF PAGES
32

1a PRICE CODE

20. UMITATION OF ABSTRACT

U/L

NSN 7540-01-280-5500 Standard Form 298 [Rev 2-89)
Prescrbed by ANSI Std Z39-18

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 CRONUS OVERVIEW 1

3.0 ISIS OVERVIEW 2

4.0 CRONUS AND ISIS MECHANISMS 3

4.1 Distributed Processing 3

4.2 Fault Tolerance 3

4.3 Real Time 4

4.4 Resource Management 4

4.5 Multi-domained Support 4

5.0 THE CRISIS ARCHITECTURE 5

5.1 The Rome Laboratory Testbed 5

5.2 The Inventory Example 5
5.2.1 An Isis Client within a Cronus Manager 5
5.2.2 A Cronus Client within an Isis Server 7

5.3 The JDL Example 7

6.0 SUMMARY 9

APPENDIX A 12

Appendix A.l (Cronus code with embedded Isis client code) 12

Appendix A.2 (Isis AddToStock task) 13

APPENDIX B 16

Appendix B.l (Cronus Filter Detections Operation with Embedded Isis client code) 16

Appendix B.2 (Isis Filter Detections Routine) 18

A-1

Appendix A.3 (Isis code with embedded Cronus client code) 14 g]
D

Appendix A.4 (Cronus AddToStock Operation) 14 Q

'.»des

or
.JI

1.0 Introduction
Distributed computing environments (DCEs)
support several key attributes that are
essential for the development and execution
of Command and Control (C2) applications.
These attributes include heterogeneity,
resource availability, concurrent
programming, fault tolerance, and resource
management. Many DCEs claim to support
all or some of these key attributes. In reality,
however, no one DCE can easily and
efficiently address all the needs of every
application. The needs of large applications
that encompass a diverse set of requirements,
such as C2 applications, are especially
difficult to satisfy with any one DCE. The
reason for this is that many DCEs are
designed using vastly different design
methodologies that make them better suited
for different types of problems.

The Cronus/Isis (CRISIS) project is an
attempt to combine attributes from multiple
DCEs to allow the application designer more
freedom when designing complex
applications. Specifically, the objective of
the CRISIS project is to design and
demonstrate the inter-operability of two
structurally different DCEs. This was
accomplished by building an application that
spans two mature yet different DCEs
(Cronus and Isis). The rationale for doing
this was to utilize the strengths of each
distributed computing environment, where a
certain DCE's design methodology is better
suited for that part of the application.

This paper is organized as follows: In
section 2 a Cronus overview is presented.
An overview of the Isis distributed
computing environment is presented in
section 3. Section 4 compares several
mechanisms provided by Cronus and Isis.
The CRISIS architecture and two examples
are discussed in section 5. Section 6
summarizes the CRISIS work as well as how
it benefits current and future technologies.

2.0 Cronus Overview
Cronus is a distributed computing
environment that supports heterogeneous
computer systems interconnected on a high-
speed local area network (LAN) or wide area
network (WAN) [Berets93]. Cronus was
developed by BBN Systems and
Technologies Incorporated to support
distributed command and control
applications, under the sponsorship of the
U.S. Air Force (Rome Laboratory). The
present version of Cronus provides support
for such diverse systems as Sun workstations
running Sun UNIX, DEC machines running
VMS or ULTRIX, HP machines running
HP-UX, and several parallel machine
architectures. Cronus currently supports
applications written in the following
languages: C, C++, FORTRAN, and
Common Lisp.

The Cronus distributed computing
environment is based on the object model.
An object consists of state information
maintained in an object database and a
collection of rules that govern how this state
information may be examined or changed.
Each rule represents an operation on the
object. Objects and their associated
operations are managed by object managers.
Operations on objects are invoked by client
programs or by other object managers.

Cronus object types define how the objects
are to be used and implemented. Types are
made up of operation code, operation
interfaces, and data structures that specify
the representation of the various objects.
Types are also placed in a hierarchy
structure that allows new types to be created
as subtypes of existing ones.

Cronus consists of services, clients, and the
Cronus kernel. Services (a service consists
of one or more object managers) implement
both system and application functions.
Current system services provided by Cronus
include an authentication service, a symbolic

naming service (global), a network
configuration service, a directory service,
and an object type definition service. Clients
within Cronus are processes that use
services. The Cronus kernel itself resides
above the native operating system and is
primarily responsible for transmitting
synchronous or asynchronous operation
invocations from clients to services. The
Cronus kernel makes the network appear
transparent. For example, a client on one
host in a given Cronus configuration can
invoke an operation on an object type whose
manager resides on another host in the
network (Figure 1).

^Client J

Cronus Kernel

Constituent OS
V /

Cronus Kernel

Constituent OS

Figure 1. Cronus Communication.

By using an object-oriented approach,
Cronus is able to provide a variety of high
level abstractions such as: (1) Management
of replicated data (on disk); (2) Parallelism,
by splitting a computation among several
machines; (3) Monitoring and reporting the
status of a computation; (4) Dynamic
reconfiguration from failures; (5) Support for
multi-domained applications; and (6)
Support for multi-clustered networks.

3.0 Isis Overview
Isis is a distributed computing environment
that provides high level tools which support
the development of fast reliable distributed
applications. Isis provides mechanisms that
support heterogeneous computer systems
interconnected on a high-speed local area
network (LAN) or wide area network
(WAN). Isis was sponsored in part by the

Defense Advanced Research Projects Agency
(DARPA) and developed at Cornell
University, Ithaca, New York. It is currently
available commercially through Isis
Distributed Systems, Inc.

The Isis distributed computing environment
is based on the concept of process groups
[Birman91][Cooper92]. Process groups are
a lightweight programming construct. A
single process can belong to any number of
groups and there is minimal overhead
associated with joining and leaving groups.
Groups have a hierarchical namespace, much
like a file system namespace, and permit
flexible, location transparent addressing.
Process groups are also capable of spanning
across multiple machines. Isis provides
mechanisms for communicating atomically
with a group, as one might do to inform its
members of some event, or to issue them a
request of some sort. Such a communication
takes the form of a multicast, in which one or
all the members of the group receive the
message, and zero or more respond
(depending on the needs of the particular
application) [Birman89].

An important strength of the Isis environment
lies in its support for implementing virtual
synchrony [Birman87]. Virtual synchrony
permits the programmer to design a
distributed program for execution in a
simplified environment, wherein all processes
observe events simultaneously and therefore
in the same order. Events such as
communication with a group or detection of
failures are atomic in a virtual synchronous
setting: all group members receive a message
(or observe failures) if any does [Birman89].

Using process groups and virtual synchrony,
Isis is able to provide a variety of high level
abstractions such as: (1) Management of
replicated data (in memory or on disk); (2)
Parallelism by splitting a computation among
several machines; (3) Coordination of an
external action; (4) Synchronization of
concurrent actions (such as when several

processes share a resource that only one can
use at a time); (5) Monitoring the status of a
computation, process or computer, and
triggering user-programmed defined actions
should the status change; and (6) Dynamic
reconfiguration from failures to include the
integration of a recovered machine into the
operational system, restarting of the services
that should run at that location and the
ability to bring the services up-to-date
concerning the active state of the system
[Birman89].

The Isis distributed computing environment
currently supports applications written in C,
C++, FORTRAN, ADA and Common Lisp.
Isis runs on (and between) SUN, DEC, HP,
GOULD, NEXT, and APOLLO equipment,
and currently requires the UNIX or MACH
operating system. However, ports to other
operating systems such as AIX and VMS are
being considered.

4.0 Cronus and Isis Mechanisms
Cronus and Isis provide support for several
key distributed computing attributes. These
attributes include distributed processing,
fault tolerance, real time, limited adaptive
resource management, heterogeneity (to
include languages, operating systems and
machine architectures) and support for multi-
domained applications. In the paragraphs
that follow each of these characteristics will
be described further, and the extent to which
Cronus or Isis provide inherent support for
these capabilities will be compared.

4.1 Distributed Processing
Distributed processing may be defined as
concurrent processes cooperating towards
common goals where each process is likely to
have incomplete and/or inconsistent global
state information. Distributed processing
provides many desirable attributes to include:
Redundant Processing - several processes
performing the same task perhaps on
different data; Concurrent Processing - work
is divided among several processes, each of
which will contribute to the final result;
Resource Sharing - sharing data, memory,

CPUs, disks, and other physical devices for a
common goal, or because a host is deficient
in the resources it requires; Reliable
Communication - reliable communication
between processes whether they are on the
same host or on different hosts connected by
LANs and WANs; and Heterogeneity - the
inter-operability of languages, operating
systems and machine architectures.

Cronus and Isis both support the attributes of
distributed processing to some degree.
However, different characteristics are evident
due to the vastly different design
methodologies of Cronus and Isis. For
example, both systems provide reliable
communications between processes but a
characteristic of Isis is to also preserve
message order. Therefore, if your
application needs reliable ordered
communications, Isis should be used because
Cronus provides no inherent mechanisms to
preserve order.

4.2 Fault Tolerance
Fault tolerance may be defined as the ability
of a system or component to perform its
function, despite the presence of hardware or
software faults. Fault tolerant mechanisms
must also be able to detect and/or recover
from hardware and software faults. Faults
fall into three classes hardware, software,
and communication. Two examples of
hardware faults are: (1) the complete loss of
a host/service; and (2) degradation in the
performance of a host/service due to
overload conditions. Software faults include
the following types of faults: (1) algorithmic
faults; (2) software component faults (service
loss); and (3) timing faults. Finally, two
examples of communication faults are: (1)
loss of connectivity (local area network or
wide area network); and (2) overloaded or
congested communications.

Cronus and Isis both provide and/or support
a limited number of fault tolerant
mechanisms. Replication - Replication is
defined as multiple copies of a resource
maintained on different hosts to improve
availability or survivability; Triple Modular
Redundancy (TMR) - TMR is defined as
three processors running the same code on

the same data and voting on the result to
mask out an error by any one processor; and
N-Version Programming - N-Version
Programming is defined as N versions of a
program (using different algorithms)
operating on the same data and voting on the
results. The only one of these fault tolerant
mechanisms that is directly supported by
Cronus and Isis is replication. The other
mechanisms, however, can be supported but
are more application specific.

Both Cronus and Isis directly support
replication. The replication mechanisms
within Isis are more flexible and dynamic
than those found within Cronus. For
example, Isis requires no pre-defined and
pre-compiled read or write quorum as does
Cronus. However, Cronus replication
mechanisms are better able to maintain
consistency during and after a network
partition. This is because Cronus does have
pre-defined read and write quorums. If a
distributed application becomes partitioned
due to a network failure, Cronus will allow
the partition containing a majority of the
application copies (i.e., managers) to
continue execution pending a recovery from
the network failure. Upon recovery of the
network, Cronus provides guarantees to
insure all copies of the application are
brought up to the current (consistent) state.
The choice to use Cronus or Isis once again
depends on the needs of the particular
application.

4.3 Real Time
"Real time may be defined as ^a system or
mode of operation in which computation is
performed during the actual time that an
external process occurs, so that the
computation results can be used to control,
monitor or respond in a timely manner to the
external process" [IEEE90]. Using this
definition, a system with real time response
capability would be able to incorporate
scheduling and resource decisions based on
the current conditions of both system and
environment. At present, neither Cronus nor
Isis has the ability to comprehensively
support such real time computations.
However, if only part of an application has a
real time requirement then an integration

similar to the CRISIS integration, but with
real time system support, would address this
issue. This shows the strength of the CRISIS
environment, i.e. an application programmer
is not stuck with any one technology but can
exploit different technologies to solve his
problems.

4.4 Resource Management
Adaptive resource management may be
defined as the ability of a system to change
its internal state to be consistent with its
external environment. Adaptive resource
management should allow for both the static
mapping of application components within
the system as well as the ability to
dynamically react to changes in the runtime
requirements that could not possibly be
anticipated. Therefore, a base for adaptive
resource management should be supported to
improve throughput and provide some level
of fault avoidance. This base should also
support both static and dynamic migration of
processes and data.

Adaptive resource management mechanisms
can be used to automatically adapt to
evolving resource availability. Therefore, in
the event of failures, the system may
automatically instantiate or migrate
application functionality within and among
the surviving system resources. Isis provides
some support for adaptive resource
management that includes "recycling" idle
workstations for remote use and managing a
pool of "compute servers". It can also
manage a reliable replicated service by
ensuring that some desired number of copies
of the service are always running, despite
machine failures. Cronus, on the other hand,
provides no such mechanisms [Isis92].

4.5 Multi-domained Support
Support for multi-domained applications is
also desirable. This would permit controlled
access to resources (e.g., computers and
data) in a flexible and efficient manner.
Cronus supports multi-domained
applications by a mechanism called clusters.
A cluster is a set of hosts grouped together
into a single administrative unit. Each
cluster is autonomous, and therefore
responsible for its own administration and

control. No host is permitted to be a member
of more than one cluster. Clusters allow
boundaries to be erected between
organizations, but can selectively allow or
deny foreign clusters access to services that
they support. This feature allows an
administrator to selectively choose the
services that will be exported from one
Cronus cluster to another, thereby limiting
the remote computing/communications
burden. Isis process groups, by default,
provide a much less sophisticated mechanism
(compared to Cronus) to support muM-
domained applications. Process groups
differ from clusters in that a member of one
group can join any number of other groups.
Process groups also have very little access
control for joining a group, and once they
become a member they can gain access to all
the group services.

5.0 The CRISIS Architecture
The design goals of the CRISIS architecture
are very straightforward. CRISIS must
demonstrate the inter-operability of two
structurally different DCEs (Cronus and Isis)
in a form that is easy to use. In doing so, it
must not inhibit the functionality of either
DCE.

In order to accomplish this goal, CRISIS
capitalized on the fact that both DCEs
selected support the client-server model. In
this model, clients make invocations to a
population of servers which can be resident
on several nodes in the system. The servers
are passive entities waiting to service an
invocation from a client. Therefore, by using
this client-server model, an Isis client can be
embedded inside a Cronus application to
allow an Isis server to be called from Cronus.
The reverse is also possible. A Cronus client
can be embedded in an Isis application to
allow a Cronus server to be called from Isis.

This is a fairly simple approach to the
integration of two complex systems.
However, this form of integration preserves
the integrity of both DCEs and is fairly
simple to use, thus meeting the design goals.

A description of the testbed and two
examples follow to illustrate the use of such
a system.

5.1 The Rome Laboratory Testbed
Rome Laboratory currently has an in-house
distributed computer systems research,
development and evaluation laboratory called
the Distributed Systems Environment
(DISE). Among the capabilities available
within the DISE is the ability to demonstrate
key distributed systems attributes utilizing
various DCEs e.g. Cronus [Berets93], Isis
[Birman91], and OSF/DCE [Johnson91].

The hardware configuration used consisted
of three Sun workstations (SPARCstation
20's) connected on an ethernet LAN. The
operating system used was Solaris 1 (BSD
v4.1.3). The DCEs used were Cronus v3.0
and Isis v3.0.8.

5.2 The Inventory Example
To test out the feasibility of the CRISIS
architecture, a simple Cronus manager called
the inventory manager was used. The
inventory manager is a sample manager
distributed with the Cronus software. It
simulates an inventory control system which
provides operations to create items, add and
subtract from the quantity of an item, and
delete items.

5.2.1 An Isis Client within a Cronus
Manager

The first case is to embed Isis client code
inside of a Cronus manager. Below is the
canonical representation of the Cronus
inventory item type.

cantype ITEM

representation is Item: record

Description: ASC

annote" A siring that describes the item.":

Count: U161

annote "The number of items in the inventory.";

end ITEM

annote "This datatype stores all the information about

an item in the inventory.";

So, an inventory item is a record containing a
description string (e.g. hammer) and an
unsigned 16-bit integer representing the
current quantity of the item in the inventory.

A typical operation on an inventory item is to
add to the quantity of that item. This
operation is defined in the inventory manager
as a generic operation called "Addtoltem".
This operation is defined in the inventory
manager's typedef file in the manner shown
below:

generic operation AddToItem(

Description: ASC;

Add: U16I;

)
returnsf

Count: U16I;

Description: ASC;

)
annote "This operation adds new slock to an inventory

item.";

So, operation AddToItem takes a description
of an item and the number of these items to
add to the database as input and outputs the
new number of these items that are in stock
and the description of the item as well. For
example, if there are currently 5 hammers in
the inventory and AddToItem("hammer",5) is
invoked, the new count of hammers in stock
would be 10.

The AddToItem operation was originally
written in Cronus. It was implemented in
Isis to demonstrate the capability of Cronus
to communicate with an Isis server. To do
this, the portion of the Cronus Addtoltem
operation that actually performed the add
was stripped out and replaced with Isis client
code. This client code makes a call to an Isis
server to perform the add. Isis then returns
the description and the new count to Cronus.

In order to make these Isis calls from
Cronus, several include files are required in
the Cronus operations code, as below:

^include "isis.h"

Minclude "isis_errno.h"

These are the standard include files in Isis
server code as well.

Below is a pseudocode version of the
Cronus Addtoltem operation with the
embedded Isis client code. The actual code is
provided in Appendix A. 1.

AddtoItem(...)

begin

retrieve item from Cronus object database;

join Isis process group;

call Isis task invAddToStock(item_name, count, addamt);

leave Isis process group;

update item count with result returned from Isis;

store the updated object in the Cronus object database

end

Lastly, here is pseudocode for the Isis
AddToStock task as defined in the Isis
server code. The actual code appears in
Appendix A.2.

AddToStock(message)

begin

get itemjiame, count, and addamt from message received

from Cronus;

add addamt to count;

return a message to Cronus consisting of the itemjiame

and the new count;

end

It should be readily apparent that the Isis
AddToStock task simply adds an amount to
a count and returns the new count and
description. While this is a very trivial
operation, it nevertheless demonstrates that a
Cronus manager can issue a call to an Isis
server and receive results back.

This example is executed by first starting the
Cronus inventory manager and the Isis
server. Using either a Cronus client or

TROPIC (TRansportable Operation
Interface for Cronus), the AddToItem
operation can be invoked. For example,
entering "on {inv} AddToItem hammer 10"
through tropic will invoke the Cronus
AddToItem operation which in turn will call
the Isis AddToStock task.

5.2.2 A Cronus Client within an Isis
Server

Next comes the second case: embedding
Cronus client code inside of an Isis server.
Demonstrating this case was slightly more
difficult because the Cronus inventory
manager had to first be converted into Isis
server code. After that was accomplished,
the AddToStock task as defined in the Isis
server code was modified to call a Cronus
operation to perform the add. This is quite
similar to what was done in the first case.

Below is pseudocode for the Isis
AddToStock routine with the embedded
Cronus client code. The actual code appears
in Appendix A.3.

AddToStock(message)

begin

get item from his store;

invoke the Cronus operation AddToStock(item_name,

count, addamt);

update the inventory item in the Isis store with the new

count;

end

In order for the Isis server to make Cronus
calls, like the AddToStock call above, the
following Cronus include files are required
in the Isis server code file.

/* Cronus includes *l

Mnclude <sldio.h>

^include <cronus.h>

^include <getqual.h>

^include <futures.h>

^include "invatmgr.h"

Pseudocode for the Cronus AddToStock
operation which is called by the Isis task

AddToStock follows below. The actual
operation code appears in Appendix A.4.

AddToStockf...)

begin

add addamt to count;

return new count and ilemjiame to Isis;

end

Again, this Cronus operation merely adds a
numeric quantity to an inventory item and
returns the new quantity and description to
Isis. Regardless of its simplicity, it
demonstrates that not only can Cronus
managers communicate with Isis servers, but
Isis servers can talk to Cronus managers as
well.

This example is executed by starting the Isis
server and the Cronus manager. By issuing
Isis calls of the form

cbcast(group_addr,ADD, "%s%d"', "hammer", 25,1,

"%d'',answer);

the Isis AddToStock task is called which in
turn calls the Cronus operation AddToStock
to perform the add. The Cronus operation
then returns the new quantity and description
back to Isis.

Since communication is possible in both
directions between Isis and Cronus, it seems
likely that these two distinctly different
DCEs can be used together to create a single
distributed application. This distributed
application could take advantage of the
features unique to both Cronus and Isis, and
thus enhance its capability.

5.3 The JDL Example
The inventory example above proved the
inter-operability of Cronus and Isis for a
simple example. To test this inter-operability
on a more complicated example, the Target
Filter (targfü) Manager component of the
Joint Directors of Laboratories (JDL)
experiment was selected.

The JDL experiment simulates a joint
tracking and targeting system. Each service
(Army, Navy, and Air Force) provides an
application, which is integrated into the
overall, distributed environment. Common
software elements, user interfaces, data
storage devices, and synchronization
mechanisms are shared between the three
services. The application is constructed of 10
components: synchronization (timing), target
simulation, track simulation, track reporting,
sensor simulations, target filtering, weather
information, situation reporting, data
management, and graphical interfaces (see
Figure 2).

Figure 2. JDL Diagram

The Target Filter manager is a Cronus
manager that receives target detections from
sensor managers, filters out false detections
and sends real detections to a Simulation
Data Manager.

Originally, all of the JDL managers were
written in Cronus. The goal was to
implement the Filter Detections operation as
an Isis server and have the JDL simulation
run as before. That is, the modification to
the simulation would be transparent to the
user and both Cronus managers and Isis
servers would be used in the simulation.

Appendix B.l shows the modified Cronus
Filter Detections routine. It is important to
note that the Cronus Filter Detections routine
is not entirely replaced by the Isis server

code. The header of the operation is left
intact, along with the three standard Cronus
operation parameters: a pointer to an
operation independent header, a pointer to the
operation's input arguments, and an output
parameter for returning values. This was
intentionally done to facilitate
communication with the other Cronus
managers in the simulation, most notably the
Sensor Managers and SimData manager. If
the entire Cronus Filter Detections routine
was removed, the Sensor Manager code
would have to be modified to be capable of
calling the Isis Filter Detections task instead
of the Cronus operation. The goal was to
keep the modifications isolated to the Target
Filter manager to minimize the impact on
other JDL managers. Keeping a "stub" of
the Cronus Filter Detections operation allows
this to be done. The Sensor Managers
communicate with the Cronus Filter
Detections operation as before. The
difference is that the "guts" of the Cronus
Filter Detections operation have been
removed and replaced with a call to the Isis
Filter Detections task (see Figure 3).

jdltfilgenFilterDetections(r,input,output)
OperationParms *r,
reqjdltfilgenFilterDetections *input;
iepjdltfilgenFilterDetections ""output;

Call to Isis
Filter Detections
Task

Figure 3. Cronus Stub

The first part of this Cronus operation
converts the array of DETECTIONDATA
into an array that can be handled by Isis.
The reason for this is the nested structures
within the DETECTIONDATA structure.
There is no easy way in Isis to pass an array
of structures with nested structures. The
workaround was to "flatten" the
DETECTIONDATA structure. That is, all
of the nested structures are removed and each
field is inserted in a new IDD (Isis Detection
Data) structure. So, the first part of the code

copies the appropriate DETECTIONDATA
information into the "flattened" IDD
structure. An array of IDD structures can be
passed to Isis with no problem at all. Once
the array of IDD structures is passed to Isis,
the Isis Filter Detections task converts it
back into an array of DETECTIONDATA,
filters out false target detections, and stores
the results with the Cronus Simulation Data
Manager.

The next section of the routine joins the Isis
process group and issues the call to the Isis
Filter Detections task shown below:

nresp=cbcast(group_addr,FILTER,"%X"Jdd,input-
xiimensions Detections, ALL,"%d",&test);

Idd is the flattened array of
DETECTIONDATA, and input-
>dimensions. Detections is the number of
detections in the current sensor sweep.

After this call, the rest of the routine simply
leaves the Isis process group and frees
memory allocations.

In summary, the Cronus Filter Detections
routine converts the data into a form that can
be used by Isis, joins the Isis process group,
makes the call to Isis to perform the target
filtering, and then leaves the Isis process
group and frees memory. The Isis Filter
Detections routine, which does the actual
target filtering, is shown in Appendix B.2.

The first part of the Isis FilterDetections
routine converts the flattened array of IDD
type back into an array of
DETECTIONDATA, array "list". After this
is done, the array of targets are filtered. New
and/or modified targets are updated with the
Cronus Simulation Data Manager. The
actual update is performed by a call to the
Cronus operation UpdateSimObject.

One important point needs to be made about
the following line in the Isis server code:

i = jdlobj_declare();

Without this declaration, the CanTypeToLen
call fails, and thus the Isis Filter Detections
task fails as well. The reason this call is
needed is that a DETECTIONDATA object
is a subtype of type JDLOB J which in turn is
a subtype of type OBJECT. In the inventory
example, an INVENTORY object was a
direct subtype of OBJECT. To quote from
the Cronus 3.0 Programmer's reference
manual: "All cantypes defined by type
object (obj), are already declared so there is
no need to call obj_declare(). Whenever
using routines that access any standard
Cronus cantypes, the user must declare the
cantypes first." This is accomplished above
by calling the jdlobj_declare routine.

So, in summary, Isis received the array of
detections from Cronus, filtered out the false
detections, and made the appropriate Cronus
calls to store the real target information in a
Cronus object database. The entire JDL
demonstration runs as if never modified. So
the Cronus/Isis integration is a success in
this more complicated example as well.

The JDL example above shows the inter-
operability of Cronus and Isis. However, it
does not show how the unique features of
Cronus and Isis were combined to produce a
greater capability than either DCE alone. To
do this, the Isis Resource Manager is
configured to keep a minimum number of
copies of the Isis FilterDetections service
running at all times. This is superior to the
Cronus replication mechanism because Isis
will automatically restart the FilterDetections
service even after failures occur to maintain
the desired number of copies. With Cronus,
manual intervention is required to restart a
failed service.

6.0 Summary
The CRISIS project focuses on one serious
limitation of today's distributed computing
technologies. This limitation is that no one
DCE can easily and efficiently address all the
needs of every application. The reason for
this is that many DCEs are based on vastly

different design methodologies that make
them better suited for different types of
problems. With the technology available
today, why should application designers
settle for one particular DCE that does not
totally fulfill their needs? The CRISIS
project addresses this problem by using the
client-server model to integrate two different
DCEs. This method was fairly simplistic
and preserved the integrity of both DCEs.

What is the future of CRISIS? It is useful
for legacy software. For example, a Cronus
developer can use existing Isis services in the
development of applications, thus saving
time and money. Similarly, existing Cronus
services can be used in the development of
Isis applications.

An environment like CRISIS would also be
useful as the micro-kernel architecture
matures. As DCEs are layered on top of the
micro-kernel, CRISIS-like solutions can act
as the glue to integrate them and allow them
to inter-operate. An application designer
could then use several different DCEs to
solve a problem and not make the
compromises that are associated with
choosing just one DCE.

The Object Management Group (OMG) is
currently developing a Common Object
Request Broker Architecture (CORBA)
specification that is trying to address this
inter-operability concept. Both Cronus and
Isis are undergoing development to become
CORBA compliant. Hopefully CORBA
compliant DCEs will eventually support
heterogeneous distributed computing
environments. Until then, efforts like
CRISIS demonstrate that this inter-
operability is attainable today without undue
complexity.

10

References
[Berets93] Berets, J.C., N. Cherniack, and R. Sands, "Introduction to Cronus", BBN Technical
Report, Jan. 1993.

[Birman87] Birman, Kenneth P. and Thomas A. Joseph, "Exploiting Virtual Synchrony in
Distributed Systems", Proceedings of the 11th ACM Symposium on Operating Systems Principles,
pages 123-138, Austin, Texas, November 1987. ACM SIGOPS.

[Birman89] Birman, Kenneth and Keith Marzullo. "A Brief Overview of the ISIS Distributed
Programming Toolkit and the Meta Distributed Operating System", March 1989.

[Birman91] Birman, Kenneth P., "The Process Group Approach to Reliable Distributed
Computing", Department of Computer Science, Cornell University, July 1991.

[Cooper92] Cooper, Robert C. B., Bradford B. Glade, Kenneth P. Birman, and Robert van
Renesse, "Light-Weight Process Groups", Department of Computer Science, Cornell University,
1992.

[Cronus92] Cronus Programmer's Reference Manual Release 3.0. Computer Software. Cronus,

1992.

[Hurley94] Hurley, Patrick M. and Scott M. Huse, "The Survivable Distributed Computing
Environment", Rome Lab Technical Report RL-TR-94-29, June 1994.

[IEEE90] IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology.

[Tsis9?/| Isis Distributed Toolkit User Guide and Reference Manual. Computer Software. Isis,

1992.

[JDL92] Joint Directors of Laboratories (JDL) Tri-Service Distributed Technology Experiment
Working Group, "Annual Technical Report", 1992.

[Johnson91] Johnson, Brad C. "A Distributed Computing Environment Framework: An OSF
Perspective", OSF Technical Paper, Cambridge, Massachusetts, June 1991.

11

Appendix A

Appendix A.l (Cronus code with embedded Isis client code)

invgenAddToItem(r, input, output)
OperationParms *r;
reqinvgenAddToItem *input;
repinvgenAddToItem *output;

{
Item *ip;
register ObjectDescriptor *objdesc;
int i ;

/* for find item */
Item **ItemL;
int nltemL;
UID *UIDL;
int nUIDL;

/* for AddToStock */
char *desc;
int count;

/* Isis Variables */
address *group_addr;
groupview *group_v;
int nresp;
short nmemb;

/* invoke Findltem to get uid */
i = InvokeinvgenFindItem(input->Description,

SltemL, &nItemL, &UIDL, &nUIDL, NULL);

if (i == ERROR)
PSST(PS_STDERR | PS_X_BAD, PS_LOG_ALWAYS,
"Can't Find Item:\n\t%s\n",
ErrorMessage());

/* Get the object from object database. */
if ((objdesc = ReadObjectDescriptor(UIDL[0])) == NULL)

PSST (PS__LOG | PS_CAN_ABORT | PS_X_BAD,
PS_LOG_ALWAYS,
"AddToItem: Error reading object descriptor:\n\t%s\n",
ErrorMessage ()) ,-

if ((ip = GetlNVData(objdesc)) == NULL)
PSST(PS_LOG|PS_CAN_ABORT|PS_X_BAD,
PS_LOG_ALWAYS,
"AddToItem: Error getting object data:\n\t%s\n",
ErrorMessage());

/* CONNECT TO Isis */
isis_remote_init((char *) 0,1602,1603,Isis_AUTOSTART);

12

isis_start_done () ;

group_addr = pg_lookup(INV_GROUP_NAME);

pg_client(group_addr, "");

/* GET THE CURRENT PROCESS GROUP VIEW */
group_v = pg_getview(group_addr);

/* FIND OUT HOW MANY MEMBERS ARE IN THE PROCESS GROUP */
nmemb = group_v->gv_nmemb;

/* BROADCAST THE COUNT FREQUENCIES REQUEST TO THE SERVERS */
printf(" Broadcasting to %d servers\n", nmemb);

/* CALL the Isis task invAddToStock */
nresp=cbcast(group_addr,ADD,"%s%d%d",
ip->Description,ip->Count,input->Add,1,
"%s%d", desc,&count);
pg_leave(group_addr);

printf("desc = %s, count = %d, \n",desc,count);

ip->Count = count;

/* Provide output parameters for reply. */
output->Count = ip->Count;
output->Description = Talloc (strlen (ip->Description) + 1);
(void) strcpy (output->Description, ip->Description);
output->valid = TRUE;

/* Update the database. */
StoreINVData(objdesc, ip, TRUE);
WriteObjectDescriptor(objdesc);

FreelNVData(ip);
(void)FreeObjectDescriptor(objdesc);

}

Appendix A.2 (Isis AddToStock task)

invAddToStock(msg_ptr)
message *msg_ptr;

{
char item_name[25];
int count, addamt;

msg_get(msg_ptr, "%s%d%d", item_name, &count,
&addamt);

if (addamt < 1)

{
reply(msg_ptr, "%d", NOT_POSITIVE);

13

return;

}
count += addamt;
reply(msg_ptr, "%s%d", item_name, count);
}

Appendix A.3 (Isis code with embedded Cronus client code)

invAddToStock(msg_ptr)
message *msg_ptr;

{
char item_name[25];
int addamt, itemindx;
int i ;
int count;
char *desc;

msg_get(msg_ptr, "%s%d", item_name, &addamt);
if (addamt < 1)

{
reply(msg_ptr, "%d", NOT_POSITIVE);
return;
}

itemindx = finditem(item_name);
if(itemindx >= 0)

{
/* update Count by invoking Cronus operation */
i = InvokeatgenAddToStock(item_name,inv_db[itemindx].Count,

addamt,&count,&desc,NULL);

if (i == ERROR)
PSST(PS_STDERR | PS_X_BAD, PS_LOG_ALWAYS,
"Error invoking AddToStock:\n\t%s\n",
ErrorMessage());

printf("CRONUS returns -> Description is %s, New Count is
%d\n",desc,count);

inv_db[itemindx].Count = count;
reply(msg_ptr, "%d", inv_db[itemindx].Count);
}

else /* Return error */
reply(msg_ptr, "%d", NO_ITEM);

}

Appendix A.4 (Cronus AddToStock Operation)

atgenAddToStock(r, input, output)
OperationParms *r;
reqatgenAddToStock *input;
repatgenAddToStock *output;

{

14

printf("Cronus operation AddToStock received Isis
invocation\n");

/* Check to make sure positive number of items are being
added. */

if (input->AddIt < 1)
{
Nack(r, E_MUST_ADD_POSITIVE);
return;
}

/* Update the object. */
input->OrigCount += input->AddIt;

/* Provide output parameters for reply. */
output->ReturnCount = input->OrigCount;
output->ReturnDesc = Talloc (strlen(input->OrigDesc) + 1);
(void) strcpy (output->ReturnDesc, input->OrigDesc);
output->valid = TRUE;
printf("Cronus operation AddToStock returning results to Isis\n");

}

15

Appendix B

Appendix B.l (Cronus Filter Detections Operation with Embedded Isis dient code)

jdltfilgenFilterDetections(r, input, output)
OperationParms *r;
reqjdltfilgenFilterDetections *input;
repjdltfilgenFilterDetections *output;

{
/* Isis Variables */
message *msg_p;
address *group_addr;
groupview *group_v;
int nresp;
short nmemb;
IDDTYPE *Idd, *Idd_test;
int I, test;
char *temp;

/* Notify the StatusDisplay Manager */
DisplayStartOp(r->msgdes.source);

/* "Flatten" the array of DETECTIONDATA */

Idd = (IDDTYPE *) malloc(sizeof(IDDTYPE) *
input->dimensions.Detections);

for (i = 0; i < input->dimensions.Detections; i++)
{
temp = UIDtoSTRING(input->Detections[i]->OriginUID,NULL);
strcpy(Idd[i].OriginUID, temp);
free(temp);
strcpy(Idd[i].OriginName,input->Detections[i]->OriginName);
temp = INTERVALtoSTRING(input->Detections[i]->Time,NULL);
strcpy(Idd[i].Time, temp);
free(temp);
Idd[i].snr = input->Detections[i]->snr;
temp = UIDtoSTRING(input->Detections[i]->Target->TargetUID,NULL);
strcpy(Idd[i].TargetUID, temp);
free(temp);
strcpy(Idd[i].TargetDescription,input->Detections[i]->Target-

>TargetDescription);
strcpy(Idd[i].TargetType,input->Detections[i]->Target-

>TargetType);
Idd[i].TargetNum = input->Detections[i]->Target->TargetNum;
strcpy(Idd[i].ThreatValue,input->Detections[i]->Target-

>ThreatValue);
Idd[i].Latitude=input->Detections[i]->Target-

>TargetLocation.Latitude;
Idd[i].Longitude=input->Detections[i]->Target-

>TargetLocation.Longitude ;
Idd[i].Altitude= input->Detections[i]->Target-

>TargetLocation.Altitude;
}

printf("Connecting to Isis\n");
/* need to define a new format type in order to pass an array of

records */

16

isis define_type('x', sizeof(struct ISISDetectionData), idd_conv);

/* CONNECT TO Isis */
isis_remote_init((char *) 0,1602,1603,Isis_AUTOSTART);

isis_start_done();

group_addr = pg_lookup(TARGFIL_GROUP_NAME);

pg_client(group_addr, "");

/* GET THE CURRENT PROCESS GROUP VIEW */
group__v = pg_getview(group_addr);

/* FIND OUT HOW MANY MEMBERS ARE IN THE PROCESS GROUP */
nmemb = group_v->gv_nmemb;

/* BROADCAST THE COUNT FREQUENCIES REQUEST TO THE SERVERS */
printf(" Broadcasting to %d servers\n", nmemb);

nresp=cbcast(group_addr,FILTER,"%X",Idd,input->dimensions.Detections,
ALL,"%d",&test);

printf ("Isis error number = %d \n",isis_errno);
printf("test = %d \n",test);
printf("NUMBER RESPONDING nresp = %d \n",nresp);

for (i = 0; i < input->dimensions.Detections; i++)

{
free(Idd[i].OriginName);
free(Idd[i].TargetDescription);
free(Idd[i].TargetType);
free(Idd[i].ThreatValue);
}

free((char*) Idd);

pg_leave(group_addr);
printf("Leaving Isis\n");

/* Notify the StatusDisplay Manager */
DisplayFinishedOpO ;
}

/* This function is called by isis_define_type inorder to pass an array
of structures of type inv_element in a message */

idd_conv(Idd)
struct ISISDetectionData *Idd;

{
msg_convertlong(&Idd->snr);
msg_convertlong(&ldd->TargetNum);
msg_convertlong(&Idd->Latitude) ;
msg~convertlong(&Idd->Longitude);
msg~convertlong(&Idd->Altitude);

}

17

Appendix B.2 (Isis Filter Detections Routine)

IsisFilterDetections(msg_ptr)
message *msg_ptr;

{

int j, i, top, MapNum, ndx, new, nlist, MapFlag, ThisList,
Updated;

int NumReal = 0, NumSemi = 0, NumFake = 0;
int *flag;
UID thisuid, *simuid, null_uid;
BOOL FOUND;
LOC3D pos; /* Lat, Long, Alt */
char *desc, *dtype, *threat;
DETECTIONdata **list;
octet dd_canvalue;
long dd_canlen;
SENSORdata **SensorStatsTemp;
int count;
IDDTYPE *Idd;

printfC'*** Entered the Isis filter routine. ***\n");

msg_get(msg_ptr, "%+X", &Idd, scount);
reply(msg_ptr, "%d",5);

list = (DETECTIONdata **) malloc(sizeof(DETECTIONdata *) * count);
for (i = 0; i < count; i++)

{
listfi] = (DETECTIONdata *) malloc(sizeof(DETECTIONdata));
STRINGtoUID(Idd[i].OriginUID,&list[i]->OriginUID);
list[i]->OriginName = (char *) malloc(strlen(Idd[i].OriginName) +

1);
strcpydist [i] ->OriginName, Idd[i] .OriginName) ;
STRINGtoINTERVAL(Idd[i].Time,slist[i]->Time);
list[i]->snr = Idd[i].snr;
list[i]->Target = (TARGETdata *) malloc(sizeof(TARGETdata));
STRINGtoUID(Idd[i].TargetUID,slist[i]->Target->TargetUID);
list[i]->Target->TargetDescription = (char *)
malloc(strlen(Idd[i].TargetDescription) + 1);
strcpy(list[i]->Target

->TargetDescription,Idd[i].TargetDescription);
list[i]->Target->TargetType = (char *)

malloc(strlen(Idd[i].TargetType) + 1);
strcpydist [i]->Target->TargetType, Idd[i] .TargetType);
list[i]->Target->TargetNum = Idd[i].TargetNum;
list [i]->Target->ThreatValue = (char *)

malloc(strlen(Idd[i].ThreatValue) + 1);
strcpydist [i]->Target->ThreatValue, Idd[i] .ThreatValue) ;
list[i]->Target->TargetLocation.Latitude = Idd[i].Latitude;
list[i]->Target->TargetLocation.Longitude = Idd[i].Longitude;
list[i]->Target->TargetLocation.Altitude = Idd[i].Altitude;
}

msg_delete(msg_ptr);

nlist = count;
Report.TotalDetections += nlist;
Report.OpsProcessed++;

18

GetNullUID(&null_uid);

i = jdlobj_declare();

/* Check if detections are Real/Semi/Fake */
for (ndx = 0;ndx < nlist; ndx++)

{
/* copy vital information used as the key parameters when calling
the SimulationData manager. */
CopyUID(&(list[ndx]->Target->TargetUID),sthisuid);
CopyLOC3D(&(list[ndx]->Target->TargetLocation),&pos);
threat = malloc(strlen(list[ndx]->Target->ThreatValue)+1);
strcpy(threat,list[ndx]->Target->ThreatValue);
desc = malloc(strlen(list[ndx]->Target->TargetDescription)+1);
strcpy(desc,list[ndx]->Target->TargetDescription);
dtype = malloc(strlen(list[ndx]->Target->TargetType)+1);
strcpy(dtype,list[ndx]->Target->TargetType);
i = CanTypeToLen(DETECTIONDATA,list[ndx]);
if(i == -1)

PSST(PS_LOG, PS_LOG_ALWAYS,
"CanTypeToLen Error:\n\t%s\n",
ErrorMessage());

printf("Return value of CanTypeToLen call: %d\n",im-
print f ("threat = %s, decs = %s, dtype = %s \n",threat,desc,dtype);

/* check if real detection */
if (NOT IsNullUID(&thisuid))

{
printf("PROCESSING Detection[%d]\n",ndx);
NumReal++;

/* change coords to minutes */
pos.Latitude = ((pos.Latitude / 10) / 60);
pos.Longitude = ((pos.Longitude /10) / 60);

printf(" Detection is REAL @
(%ld,%ld,%ld)\n",pos.Latitude,pos.Longitude,pos.Altitude);

/* check to see if detection has been seen before. if so,
update it. if not, create/store new detection with
simdata manager. */

simuid = CheckStorageList(thisuid);
if (simuid == NULL)

{
printf(" Detection is being STORED\n");

/* Send detection to simdata manager */
simuid = &null_uid;
FOUND = StoreSimObject(simuid,&pos,AirForce,

TargetData,threat,dtype,
DETECTIONDATA,i,list[ndx]);

/* if operation sucessfully completes, add the
simdata object UID to the storage list and report
to other targfil managers. */

if (FOUND == OK)
{
printf(" STORING Detection\n");
AddToStore(thisuid,*simuid);

19

printf(" Notifying other TargetFilters of
Detection\n");

IdentifyTarget(thisuid,*simuid);
}

else /* log reason why operation failed */
{
printf(" Unable to complete operation:

SimulationData Manager\n");
printf(" %s\n", ErrorMessage());
}

}
else /* this detection needs updating */

{
printf(" UPDATING Detection\n");
UpdateSimObject(

simuid,&pos,NULL,NULL,NULL, NULL,
DETECTIONDATA,i,list[ndx]);

}
}

else /* process the fake detection */
{
NumFake++;
}

} /* iterate to next detection */
printf ("Finished DetectionSet: %d Detections\n\n",nlist);

Report.RealDetections += NumReal;
Report.SemiRealDetections += NumSemi;
Report.FakeDetections += NumFake;

printf ("*** Exited the Isis filter routine. ***\n");

return(OK);

}

/* init */
void
pg_init()
{
printf("in pg_init\n");
}

/* This function is called by isis_define_type inorder to pass an array
of structures of type inv_element in a message */
idd_conv(Idd)

struct ISISDetectionData *Idd;
{
msg_convertlong(&Idd->snr) ;
msg_convertlong(&ldd->TargetNum);
msg_convertlong(&Idd->Latitude);
msg_convertlong(&Idd->Longitude);
msg__convertlong(&Idd->Altitude) ;
}

20

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name; . (Optional)

Organization POC: . : (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

«U.S. GOVERNMENT PRINTING OFFICE: 1995-610-126-50171

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

